叶绿体和线粒体中都含有DNA和RNA。那它们的DNA和细胞核中的DNA是相同的吗

花草树木023

叶绿体和线粒体中都含有DNA和RNA。那它们的DNA和细胞核中的DNA是相同的吗,第1张

叶绿体和线粒体中都含有DNA和RNA。那它们的DNA和细胞核中的DNA是相同的吗
导读:楼主的补充是正解。线粒体和叶绿体基因 与细胞核基因在进化过程中相对独立,而这恰恰就是内共生学说的几大证据之一。比如说这两个细胞器里面的DNA是环状的,而且也很小。等等。线粒体和叶绿体也会自己分裂。(当然,线粒体基因和细胞核基因还是有交流的,

楼主的补充是正解。

线粒体和叶绿体基因 与细胞核基因在进化过程中相对独立,而这恰恰就是内共生学说的几大证据之一。比如说这两个细胞器里面的DNA是环状的,而且也很小。等等。线粒体和叶绿体也会自己分裂。(当然,线粒体基因和细胞核基因还是有交流的,但相对独立。)

这个已经写进教科书了。

下面是别的地方抄的。

内共生

线粒体和叶绿体起源于古代细菌内共生的证据如下:

线粒体和叶绿体都含有DNA,这些DNA与细胞核中的很不同,却类似细菌的DNA(环状及其大小)。

线粒体具有和真核宿主细胞不同的遗传密码,这些密码与细菌和古菌中的很类似。

它们被两层或更多的膜所包被,其中最里面一层的成分与细胞中其它膜的都不同,而更接近于原核生物的细胞膜。

新的线粒体和叶绿体只能通过类似二分分裂的过程形成。在一些藻类以及眼虫(Euglena)中,可以用药物或长时间缺乏光照来破坏叶绿体而同时不影响细胞。这种情况下,叶绿体不能够再生。

叶绿体的很多内部结构和生物化学特征,如类囊体的存在和某些叶绿素和蓝藻很接近。对细菌、叶绿体和真核生物基因组构件的系统发生树同样支持了叶绿体与蓝藻更接近。

DNA序列分析和系统发生学表明了核DNA包含了一些可能来源于叶绿体的基因。

一些核中编码的蛋白被转运到细胞器中,而线粒体和叶绿体的基因组相对于其它生物来说都小得多。这和内共生物形成后越来越依赖真核生物宿主相一致。

叶绿体存在于很多完全不同的原生生物中,这些生物普遍和不包含叶绿体的原生生物更接近。这表明了,如果叶绿体起源于细胞的一个部分,很难解释他们多次起源而互相又非常接近。

细胞器的大小与细菌相当。

细胞器的核糖体和细菌相似,都是70S。

    被子植物中,无油樟目(Amborellales)、睡莲目(Nymphaeales)和木兰藤目(Austrobaileyales)并称基部被子植物类群,取首字母组合成了ANA clade,是最早分化的被子植物类群。早期,大量基于叶绿体基因、核基因以及叶绿体、核以及线粒体基因组合的系统发育分析确定无油樟是所有被子植物的姊妹分枝,2013年在Science上发表的无油樟基因组基于此推断了早期被子植物的演化(doi:  101126/science1241089 );另外,2020年1月在Nature上发表的之一个睡莲目植物蓝星睡莲基因组鉴定了无油樟和睡莲依次是所有其它被子植物的姊妹分枝(doi:  101038/s41586-019-1852-5 )。目前,木兰藤目还没有代表性的物种具有可利用的参考基因组序列。

    除了基部被子植物三大目,核心被子植物(Mesangiospermae)主要包括了五大类群,即真双子叶植物(eudicots)、单子叶植物(monocots)、木兰类植物(magnoliids)、金鱼藻目(Ceratophyllales)以及金粟兰目(Chloranthales)。核心被子植物占据了被子植物的99%,其中真双子叶和单子叶分别占据了75%和22%的核心被子植物,属于两个更大的类群,另外木兰类植物大概包含9000个植物,是核心被子植物中的第三大类群,而剩余的金粟兰目和金鱼藻目分别只含77和7个植物物种。

    目前,单、真双子叶植物中的全基因组序列报道较多,基本涵盖了各自类群中的主要目、科物种,而木兰类植物逐渐也开始报道全基因组序列,木兰目木兰科中国鹅掌楸(Nature Plants, doi:  101038/s41477-018-0323-6 )、樟目樟科牛樟(Nature Plants, doi:  101038/s41477-018-0337-0 )、樟目樟科牛油果(PNAS, doi:  101073/pnas1822129116 )、胡椒目胡椒科黑胡椒(Nature Communications; doi:  101038/s41467-019-12607-6 )、 樟目樟科山苍子 、 樟目蜡梅科蜡梅 、 胡椒目马兜铃科马兜铃 、 樟目樟科樟树 等。

    木兰类植物由四个目组成,白桂皮目Canellales,胡椒目Piperales,樟目Laurales以及木兰目Magnoliales

    单子叶基部论:支持木兰类与双子叶植物互为姐妹群,单子叶是更为古老的基部类群:樟目牛樟,樟目牛油果,樟目腊梅,樟目柳叶腊梅,樟目山苍子,樟目红花腊梅,樟目樟树, 樟目红花腊梅

    木兰类基部论:支持单子叶与双子叶植物互为姐妹群,木兰类是更为古老的基部类群:木兰目鹅掌楸,胡椒目黑胡椒

    马兜铃基因组认为:基于序列的前期研究均难以获得高可信度的系统发育关系。该研究对被子植物主要类群的代表物种进行基因组结构比较,发现木兰类植物和单子叶植物共享了一次染色体易位事件,而真双子叶植物则缺失了这一演化的特征,该结果支持了木兰类植物和单子叶植物可能互为姐妹群,而双子叶植物在二者分化之前已形成的观点。

    金鱼藻目金鱼藻基因组和睡莲目芡实基因组推测无油樟和睡莲类依次是其他被子植物的姐妹群,同时推测金鱼藻是真双子叶植物的姐妹群。

    金粟兰目金粟兰两篇基因组文章支持单子叶基部论:金粟兰-木兰类姐妹群和双子叶-金鱼藻分支关系较近,单子叶植物位于核心被子植物最基部分支。

    APG系统,也称为APG分类法,是指被子植物系统发育研究组(Angiosperm Phylogeny Group)以分支分类学和分子系统学为研究 *** 提出的被子植物分类系统。 自1998年首次提出APG I之后,2003年发布了APG II,2009年发布了APG III,2016年发布了APG IV。

     被子植物被划分为:无油樟目、睡莲目、木兰藤目和核心被子植物(Mesangiospermae)。无油樟目、睡莲目、木兰藤目共同被称为ANA grade,是被子植物的基部类群,系统发育关系相对稳定,而核心被子植物包含了~9995%的被子植物,又可被划分为5大类群:真双子叶、单子叶、木兰类、金鱼藻目和金粟兰目。

    在早期的植物分类系统中,木兰目(Magnoliales)常常被认为是被子植物生命树的基部类群,也就是最原始的被子植物;但是,化石证据显示,早期被子植物的花是较小的、较简单的,而木兰目植物的花大,花的零部件数目多,显然有冲突。

    近些年来,随着植物分子系统学研究的不断深入,对被子植物的起源问题有了新的认识。研究表明:在现存的植物界里,有一小群被子植物要比木兰目更原始,它们是其它被子植物的姊妹群,虽然不是其他被子植物的祖先,但是它们比任何其它被子植物都更接近未知的最原始被子植物。

    植物界的生命树,树冠右边部分是被子植物(Angiosperms),其中主要有两大片,一片是双子叶植物(Dicots),一片是单子叶植物(Monocots);在这两大片的基部,能找到Amborella和Water Lilies两个分支,那个位置就是APG分类系统中早期被子植物(ANA Grade)所在的位置。

    在APG IV系统中,早期被子植物(ANA Grade)包括三个目,分别是:无油樟目(Amborellales)、睡莲目(Nymphaeales)和木兰藤目(Austrobaileyales)。这里请注意三个目名称的首字母,分别是A、N和A,放在一起就是ANA,对这一群植物的统称。

    这其中,无油樟目(Amborellales)最原始,仅有1科1属1种,即:无油樟(Amborella trichopoda)。

    睡莲目(Nymphaeales)有3个科,分别是:独蕊草科(Hydatellaceae)、莼菜科(Cabombaceae)和睡莲科(Nymphaeaceae)。

    木兰藤目(Austrobaileyales)也有3个科,即:木兰藤科(Austrobaileyaceae)、苞被木科(Trimeniaceae)和五味子科(Schisandraceae)。

    无油樟目仅有1个物种,那就是无油樟(Amborella trichopoda),也叫互叶梅。这种灌木或者小乔木生活在在太平洋新喀里多尼亚(New Caledonia),位于南太平洋南回归线附近,距澳大利亚昆士兰东岸1500公里处,是法国的一个境外领地,是久负盛名的旅游胜地。

    在早期的分类系统中,无油樟一直放在樟目(Laurales),认为是从木兰目演化而来,与我们常见的樟树(Cinnamomum camphora)和肉桂(C cassia)是远房亲戚。然而,无油樟的很多特点让这种安排显得格格不入。 它的木质部没有导管,只有管胞。这一现象常常被认为是一种原始的特征,因为被子植物绝大多数都具有导管,裸子植物绝大多数却只有管胞。这一特点也就是我们为什么把针叶树的木材称为软木(softwood),而把阔叶树的木材称为硬木(hardwood)的原因。

    无油樟的雌雄异株,花很小,单性,花被片5到8枚,但是长得很模糊,傻傻地分不清哪些是花瓣,哪些是萼片;不仅如此,雄蕊也长得很模糊,分不清花丝和花药。有一个实验揭示了这种植物更为奇葩的一面:这种植物会变性。科学家从一棵无油樟雄株上获得7个插条,扦插成活后,7个新的个体之一次开花就像人们预料的那样,开出了雄花;可是,待到第二次开花时,其中的三个出人预料地开出了雌花。这一现象会让我们想起了水中一些会变性的一些鱼。

    2013年底发表在《科学(Science)》杂志上的一篇研究报告还揭示了更为神奇的秘密。该项研究显示,无油樟的线粒体基因组经历了史诗般的基因大漂移,它曾经从其它植物身上获得了6个外源基因组,1个来自苔藓,3个来自绿藻,2个来自其它开花植物。这是首次发现一个细胞器能够捕获其他生物的整个基因组,也是首次发现陆生植物获取了绿藻的基因。仔细想想,这可比今天的转基因不知道要剧烈多少倍。植物分子系统学的研究把无油樟放在了被子植物生命树的基部,使其成为其它所有被子植物的姊妹群,这也让这种植物身上的一些原始特征有了更好地解释。

   不同的基因 *** 与系统发育构建方式,是推断不确定关系的必经之路。2013年的无油樟基因组完成测序,核实了其“被子植物最早分化类群”的地位。 2019年睡莲基因组以不同方式构建的系统发育结果补充说明了无油樟是被子植物最早分化类群。这个结果至少潜在说明了:现生的被子植物并非是从水中开始发迹的。

    在APG IV系统中,位于基部的睡莲目(Nymphaeales)有3个科,分别是:独蕊草科(Hydatellaceae)、莼菜科(Cabombaceae)和睡莲科(Nymphaeaceae)。独蕊草科仅含1属,有12个种,莼菜科含2属,有6种;睡莲科含5属,约有70个种。

    独蕊草科在APG系统里的位类位置变化是相当剧烈的,从一个侧面再一次说明了生物之间长得像亲缘关系不一定近,长得不像亲缘关系也不一定就远。趋同进化有时候就像在黑夜里悄悄地被蒙上了双眼,让人类饱受瞎子摸象的迷茫。

    本科有5个属,分别是萍蓬草属(Nuphar)、合瓣莲属(Barclaya)、芡属(Euryale)、王莲属(Victoria)和睡莲属(Nymphaea),这几个属一共大约有70个物种。如睡莲,芡实等。莲属(Nelumbo)这个属很久以前就已经另立新科,即莲科(Nelumbonaceae),现放在了山龙眼目(Proteales)。

    在APG IV系统中,木兰藤目(Austrobaileyales)有3个科,分别是木兰藤科(Austrobaileyaceae)、苞被木科 (Trimeniaceae)和五味子科(Schisandraceae)。分子生物学研究的证据显示他们之间的关系如下图所示:

    APG IV系统中的五味子科其实包括了传统意义上的两个科,即八角科(Illiciaceae)和五味子科(Schisandraceae)。五味子科包括3个属,分别是八角属(Illicium)、五味子属(Schisandra)和南五味子属(Kadsura),共计大约有85个物种。其中的八角(Illicium verum),俗名大料,是著名的香料,离我们的生活最近。

    金粟兰目只有一个科,即金粟兰科,这个科有4个属,分别是金粟兰属(Chloranthus)、雪香兰属(Hedyo *** um)、草珊瑚属(Sarcandra)和蛔形兰属(Ascarina),一共大约有77个物种。金粟兰科中,有的属只有管胞而没有导管,有些物种的叶脉中既有管胞也有导管,再联合花药上的一些特征,可以明显地感觉到这个科的的原始性。

    华大金粟兰基因组:基于多物种核基因组和叶绿体基因组数据,获得四个核基因矩阵和两个叶绿体基因矩阵所有数据集构建的系统发育树结构都支持 金粟兰是木兰类的姐妹群 。使用DensiTree 对18个物种的核基因树和叶绿体树进行可视化,发现二者存在拓扑分支冲突: 核基因树溯祖法和串联法建树支持金粟兰-木兰类姐妹群和双子叶-金鱼藻分支关系较近,单子叶植物位于核心被植物最基部分支;而叶绿体基因建树结果支持单子叶植物与双子叶-金鱼藻分支构成姐妹关系,而金粟兰-木兰类位于核心被子植物最基部分支。 这种分支关系不一致也大量体现在核基因单独建树的结果中。

    随后研究者使用QuIBL, PhyloNet 和ABBA-BABA D-statistics三种 *** 分析金粟兰-木兰类系统位置的矛盾,结果表明,在早期被子植物进化过程中单双子叶植物之间可能发生基因流,造成主要分支之间基因树、或核基因组-叶绿体基因组系统发育分支关系不一致(图右)。

    兰大金粟兰基因组:通过使用多种系统发育基因组学分析,包括单拷贝基因、低拷贝基因和共线性基因数据集,进行了串联树和溯祖树的构建,同时评估了长枝吸引、物种选择和同源聚类 *** 等的影响,使用多套数据 *** 和多种分析 *** ,获得了高可信度的拓扑结构,即 金粟兰目和木兰类具有最近的亲缘关系,且他们一起与金鱼藻目+双子叶植物构成姊妹关系,而单子叶植物是其它所有核心被子植物的姊妹枝。

    同时,作者也发现了大量的基因树或叶绿体树与物种树不一致的情况,因此着重评估了不完全谱系分选(ILS)和杂交事件对此冲突的贡献(后面详看论文)。

    木兰类植物由四个目组成,白桂皮目Canellales,胡椒目Piperales,樟目Laurales以及木兰目Magnoliales

没记完

声明:本篇多为资料整理总结,仅用于自学记录,侵删,谢谢。感谢作者大大们分享:

APG IV系统学习笔记分享    王康聊植物    http://wwwcsforgcn/News/newsDetailaspxaid=27032

演化生物学     https://mpweixinqqcom/s/IyBWxw_XZZSstxNjfdmfNA

华大BGI     https://mpweixinqqcom/s/dSjXR4HfHdSlPOa2LeYAjA

BioArt植物     https://mpweixinqqcom/s/YQ7VLFfEoz9VplvM2_CYbQ

睡莲基因组     https://wwwnaturecom/articles/s41586-019-1852-5

华大金粟兰基因组     https://wwwnaturecom/articles/s41467-021-26922-4

兰大金粟兰基因组     https://wwwnaturecom/articles/s41467-021-26931-3

芡实与金鱼藻基因组    https://mpweixinqqcom/s/gob1XmcFPRqIVzw-8vHMhA

一般的定义是单倍体细胞中的 *** 染色体为一个基因组,或是单倍体细胞中的全部基因为一个基因组。可是基因组测序的结果发现基因编码序列只占整个基因组序列的很小一部分。因此,基因组应该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。说的更确切些,核基因组是单倍体细胞核内的全部DNA分子;线粒体基因组则是一个线粒体所包含的全部DNA分子;叶绿体基因组则是一个叶绿体所包含的全部DNA分子。

人类基因组:指人体dna分子所携带的全部遗传信息。由24条双链的dna分子组成(包括1~22号染色体dna与x、y染色体dna),上边有30亿个碱基对,30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。30亿个碱基对,太庞大了,无法精确的告知你序列是什么样的。但可以告诉你:人类基因组计划:

1、概念:是指分析测定人类基因组的核苷酸序列。

2、主要内容:绘制人类基因组的四张图,即遗传图、物理图、序列图和转录图。绘制这四张图好比是建立一个“人体地图”,沿着地图中一个个路标,如“遗传标记”、“物理标记”等,可以一步步地找到每一个基因,搞清楚每一个基因的核苷酸序列。

3、进展:2000年6月26日,6国科学家向世界宣布:“人类基因组草图”的绘制工作已经全部完成。预计到2003年,“人类基因组精图”的绘制工作也将全部完成。

4、意义:(1)对于各种疾病,尤其是各种遗传病的诊断、治疗具有划时代的意义;(有利于疾病的诊断和治疗。)(2)对于进一步了解基因表达的调控机制、细胞的生长、分化和个体发育的机制,以及生物的进化等也具有重要的意义;(有利于研究基因的表达和调控机制);

(有利于研究生物的进化。)(3)将推动生物高新技术的发展,并产生巨大的经济效益。(有利于培育优良的动植物品种)。另外,美国奎格•文特研究所和多伦多儿童医院以及加州大学的研究者日前公布了奎格•文特本人的基因组序列,这是世界上之一次公布单个个体二倍体的基因组序列,初步分析报告发表在最新一期的《plos生物学》上。

基因组(Genome) 指的是细胞内 *** 染色体及其所携带的全部基因,包括基因序列和基因间序列。

C值(C Value) :在每一种生物中其单倍体基因组的DNA总量。

C值悖论(C Value Paradox) :生物的C值并不与生物复杂程度(或进化上所处地位)相关。

G值悖论(G Value Paradox) :基因组中全部基因的数目与物种的复杂程度同样没有明显的相关性。

病毒基因组 :大小从几kb到几百kb不等;基因组的结构形式多样;通过多种 *** 在较小的基因组容量内提高携带遗传信息的效率,比如基因组内非编码序列所占比例极少,含有大量的重叠基因;基因组内存在操纵子结构。

原核细胞基因组特点 :闭合的环状双链DNA分子,包括类核和质粒,但质粒是染色体外DNA,不是细菌存活所必需的;多数基因是单拷贝基因,两条DNA链都可以编码基因,非编码序列的比例很低,重叠基因比例显著减少;含有少量重复序列,也含有一些特殊的DNA结构元件;基因的组织顺序和染色体复制方向有关,存在大量操纵子结构。

线粒体基因组特点 : *** 的环形DNA分子;主要编码少量rRNA、tRNA和部分呼吸链组分蛋白质;其大小和生物的复杂程度无关;线粒体DNA是多拷贝的,在胞质分裂的过程中不同的线粒体DNA随机分配给子细胞。

叶绿体基因组特点 :闭合环状DNA,有多个拷贝,且拷贝数可变;基因组大小多数为几百kb大小;编码的基因数较多,包括tRNA基因、rRNA基因、RNA聚合酶基因、核糖体蛋白编码基因、光合作用相关蛋白组分的编码基因,且含有大量内含子序列;含有两端数十kb大小的反向重复区(IR区),将环状DNA分子分隔成大单拷贝区(LSC区)和小单拷贝区(SSC区)。

遗传冗余(Genetic Redundancy) 是真核基因组区别于原核基因组的显著特征。

23对染色体,32Gb序列;GC含量偏低,仅占38%,且不同染色体的不同区段上GC含量也不相同;共20687个蛋白质编码基因,平均含有9个外显子,长度27kb,但不同基因间的差异极大;基因在染色体上不均匀分布;少见重叠基因和多顺反子转录单位;除去编码基因,非编码序列占人类基因组的985%,远远高于其他任何一种生物。

蛋白质编码基因分类:酶1028%,核酸酶75%,信号传导122%,转录因子60%,信号分子12%,受体分子53%,选择性调节分子32%。

基因座(Locus) :基因在染色体上所处的位置,每个特定的基因在染色体上都有其特定的座位。

基因簇(Gene Cluster) :一些基因序列和功能高度一致的基因分布在染色体的相同位置,紧密连锁,构成基因簇。

基因家族(Gene Family) :人类基因组中的一些基因,它们的全部或部分序列高度同源,能够编码保守的蛋白质结构域或者氨基酸基序,这些基因构成了一个基因家族。

基因超家族(Gene Superfamily) :一些基因之间的序列同源性低,基因产物没有保守的蛋白质功能域或者氨基酸基序,但是功能相关,且具有相同的特征结构,这类基因的进化亲缘关系较远,构成基因超家族。

假基因(Pseudogene) :又称 拟基因 ,与基因组中有功能的基因具有相似的序列,但失去蛋白质编码功能或不能正常转录表达的DNA序列。

常规假基因(Classical/Convential Pseudogene) :在基因组进化过程中功能基因复制后发生突变产生的失活产物。

加工假基因(Processed Pseudogene) :功能基因的mRNA转录产物反转录为cDNA后再次插入基因组,形成一个新的基因拷贝,又称为 反转座假基因(Retropseudogene)

非编码RNA(non-Coding RNA,ncRNA) :不具有蛋白质编码功能的RNA。ncRNA的编码基因有的位于蛋白质编码基因的内部(如内含子),有的位于蛋白质编码基因的相关序列(如假基因),还有的位于基因间的非编码序列。

包括:rRNA、tRNA、snRNA(内含子剪接)、snoRNA(rRNA加工)、miRNA(转录后调控)、siRNA(转录后调控)、piRNA(转座调控, *** 发生)、lncRNA(转录及翻译后调控、表观遗传修饰)

约占75%,其中绝大部分为重复序列。

分类: 低度重复序列(2-10个拷贝)、中度重复序列(10-10 5个拷贝)、高度重复序列(10 6个拷贝)。

串联重复序列 :核心重复序列头尾相连串联在染色体上,包括:大卫星DNA、卫星DNA、小卫星DNA、微卫星DNA

散在重复序列 :主要是转座元件,包括:以RNA为中介的转座序列和DNA转座子化石。

以RNA为中介的转座序列包括 短散在核序列(Short Interspersed Nuclear Element,SINE) 长散在核序列(Long Interspersed Nuclear Element,LINE) 具有长末端重复序列的LTR元件(Retrovirus-like Element) ,又称 反转录病毒类似元件

大片段基因组倍增(Segmental Duplis,SDs) ,又称 低拷贝重复(Low-copy Repeats) ,指的是一段1-200kb的基因组大片段从基因组中某个特定位置转移到另一个或多个位置形成多个拷贝的现象。SDs的不同拷贝之间的序列相似度高,易造成染色体的同源重组。

以上内容参考中国大学MOOC网站复旦大学遗传学。